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In order to describe quantum heat engines, here we systematically study isothermal and isochoric processes
for quantum thermodynamic cycles. Based on these results the quantum versions of both the Carnot heat
engine and the Otto heat engine are defined without ambiguities. We also study the properties of quantum
Carnot and Otto heat engines in comparison with their classical counterparts. Relations and mappings between
these two quantum heat engines are also investigated by considering their respective quantum thermodynamic
processes. In addition, we discuss the role of Maxwell’s demon in quantum thermodynamic cycles. We find
that there is no violation of the second law, even in the existence of such a demon, when the demon is included
correctly as part of the working substance of the heat engine.
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I. INTRODUCTION

Quantum heat engines (QHEs) [1,2] produce work using
quantum matter as their working substance. Because of the
quantum nature of the working substance, QHEs have un-
usual and exotic properties. For example, under some condi-
tions, QHE can surpass the maximum limit on the amount of
work done by a classical thermodynamic cycle [3,4] and also
surpass the efficiency of a classical Carnot engine cycle [5].
QHEs offer good model systems to study the relation be-
tween thermodynamics and quantum mechanics. Meanwhile,
they can highlight the difference between classical and quan-
tum thermodynamic systems, and help us understand the
quantum-classical transition problem of thermodynamic pro-
cesses [6].

The classical Carnot heat engine is a well-known machine
that produces work through thermodynamic cycles. The ther-
modynamic properties of the four strokes of each cycle are
simple and demonstrate the universal physical mechanism of
heat engines. Current studies [3—14] on QHE mostly focus
on the quantum analogue of classical Carnot engines, i.e., the
quantum Carnot engine (QCE). The quantum Otto engine
(QOE) is another interesting case of a QHE, which is also
attracting considerable attention [3,4,15-18]. However, we
find that there is no universal and consistent definition of the
QCE and the QOE in the literature (see, e.g., Refs.
[5.9,10,19,20]), and thus the properties of QCEs and QOE
are not always addressed adequately and clearly.

Any QHE cycle consists of several basic quantum ther-
modynamic processes, such as quantum adiabatic processes
(which have been clarified in many references, e.g., [21]),
quantum isothermal processes and quantum isochoric pro-
cesses. This paper begins by clarifying the concepts of iso-
thermal processes, isochoric processes, and effective tem-
peratures in their quantum mechanical pictures. Then we
systematically study the general properties of a quantum ana-
logue of a Carnot engine. The difference between a QCE and
its classical counterpart is indicated clearly. We also study
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the QOE based on its basic quantum thermodynamic process
and analyze the relation between these two types of QHEs.
Here we assume that the processes of our thermodynamic
cycles are infinitely slow, i.e., the time interval of each pro-
cess is assumed to be very long. Accordingly, the output
power is very small. This is also the requirement of quasi-
static processes. Assuming fast cycles would increase the
output powers, but at the expense of reduced engine effi-
ciency. Also, some experimentally realizable physical sys-
tems, which can be used to implement our QCE and QOE,
are discussed. Furthermore, based on our generalized QOE
model, we demonstrate that there is no violation of the sec-
ond law, even in the presence of a Maxwell’s demon.

Our paper is organized as follows: In Sec. II we give a
clear definition of quantum isothermal and isochoric pro-
cesses based on the quantum identification of work per-
formed and heat exchange. In Sec. III we discuss the QCE
cycle and calculate the work done during this cycle and its
operation efficiency. In Sec. IV we discuss the QOE cycle
and compare it with the classical Otto engine cycle. In Sec.
V we compare these two kinds of QHEs and study the rela-
tion between them. In Sec. VI we give some examples of
these two kinds of QHEs considering experimentally realiz-
able physical systems. In Sec. VII we discuss the QOE and
Maxwell’s demon. Conclusions and remarks are given in
Sec. VIIL

II. BASIC QUANTUM THERMODYNAMIC PROCESS
A. Quantum first law of thermodynamics

To define quantum isothermal and quantum isochoric pro-
cesses, we need to first consider the working substance. An
arbitrary quantum system with a finite number of energy lev-
els is used here as the working substance (see Fig. 1). (Of
course, this can be generalized to systems with an infinite
number of energy levels.) The Hamiltonian of the working
substance can be written as

©2007 The American Physical Society
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FIG. 1. (Color online) Schematic diagram of multilevel quantum
system as the working substance for a QHE. EZ and Ef1 are the nth
eigenenergy of the working substance in the two isochoric
processes.

H= 2 E,|n)n|, (1)

where |n) is the nth eigenstate of the system and E,, is its
corresponding eigenenergy. Without loss of generality, we
choose the eigenenergy of the ground state |0) as a reference
point (see Appendix A). Then the Hamiltonian (1) can be
rewritten as

H=2 (E, - E)ln)nl|. )

Below we will show that it is convenient for our discussion
about QHESs to use the Hamiltonian (2). The internal energy
U of the working substance can be expressed as

U=(H)= >, P,E,, 3)

n

for a given occupation distribution with probabilities P, in
the nth eigenstate.

To clearly define quantum isothermal and isochoric pro-
cesses, we need to identify the quantum analogues of the
heat exchange dQ and the work performed dW. From Eq.
(3) we have

dU= >, (E,dP,+ P,dE,). (4)

In classical thermodynamics, the first law of thermodynam-
ics is expressed as

dU=dQ + dw, (5)

where dQ=TdS, and dW=X,Ydy, [22]; T is the temperature
and S is the entropy; y; is the generalized coordinates and Y;
is the generalized force conjugated to y;. Due to the relation-
ship S=—kpz>,P; In P; between the entropy S and the prob-
abilities P;, we can make the following identification [3,4,17]

dQ=2> E,dP,, (6)
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Equation (7) implies that the work performed corresponds to
the change in the eigenenergies E,, and this is in accordance
with the fact that work can only be performed through a
change in the generalized coordinates of the system, which
in turn gives rise to a change in the eigenenergies [4,23].
Thus the quantum version of the first law of thermodynamics
dU=dQ+dW just follows from Eq. (4) with the quantum
identifications of heat exchange and work performed in Egs.
(6) and (7). Different from dQ=TdS, which is applicable
only to the thermal equilibrium case, below we will see that
Egs. (6) and (7) are applicable to both the thermal equilib-
rium case [see e.g., Eq. (36)] and the nonequilibrium case
[see, e.g., Eq. (21)].

B. Quantum isothermal process

Let us now consider the quantum versions of some ther-
modynamic processes. First we study quantum isothermal
processes. In quantum isothermal processes, the working
substance, such as a particle confined in a potential energy
well, is kept in contact with a heat bath at a constant tem-
perature. The particle can perform positive work to the out-
side, and meanwhile absorb heat from the bath. Both the
energy gaps and the occupation probabilities need to change
simultaneously, so that the system remains in an equilibrium
state with the heat bath at every instant. Specifically, let us
consider a two-level system with the excited state |e), the
ground state |g), and a single energy spacing A. In the qua-
sistatic quantum isothermal process, the ratio r=P,/ P, of the
two occupation probabilities, P, and P,, must satisfy the
Boltzmann distribution r=P,/P,=exp[-BA(¢)] and also the
normalization condition P,+P,=1. A(#) changes slowly with
time ¢, and accordingly » can be written as

P
r=r()=—=2=¢Pr0, (8)

Py
where B=1/kgT, kg is the Boltzmann constant and T is the
temperature. In a sufficiently slow process, at every instant

the system remains in thermodynamic equilibrium with the
heat bath.

C. Effective temperature

We can also define an effective temperature 7. for any
two-level system according to the ratio r(rf) and the level
spacing A(z). For a two-level system with energy levels E,
and E,, even in a nonequilibrium state, we can imagine that
it is in a virtual equilibrium state with the effective tempera-

ture
1 At P, \"!
Tegr= —=£<ln J) , 9)
kgBer kg P

as long as the level spacing A(7) and the energy level distri-
butions P, and P, are known. Of course, Eq. (9) cannot be
directly generalized to the case with more than two levels.
For example, for a three-level system with occupation prob-

e
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TABLE 1. Quantum vs classical thermodynamic processes. Here we use “INV” to indicate the invariance of a thermodynamic quantity
and “VAR” to indicate that it varies or changes. U is the internal energy of the working substance; 7, P, E,, P, are defined in Sec. II. The
working substance of the classical thermodynamic processes considered here is the ideal classical gas.

Isothermal process Isochoric process Adiabatic process
Heat absorbed or released Heat absorbed or released No heat exchange
Classical Work done No work done Work done
INV: U, T VAR: P,V INV: V. VAR: P,T VAR: P, T,V
Heat absorbed or released Heat absorbed or released No heat exchange
Quantum Work done No work done Work done
INV: T VAR: U,E,. P, INV: E, VAR: P, Ty INV: P, VAR: E,, Ty

abilities P,, P, and P, in three states denoted by |a), |b), and
|c), if the two-level spacings A,,(f) and A,.(t) do not satisfy
the relation

1 P 1 P
a In—2, (10)
P,

n—=
Apt) Py Ay (1)
we cannot define a unique effective temperature. The subset
{la),|b)} can have an effective temperature defined by Eq.
(9), while the subset {|b),|c)} would have a different effec-

tive temperature. We will discuss this point in detail in a
QCE cycle in Sec. III.

D. Quantum isochoric process

A quantum isochoric process has similar properties to that
of a classical isochoric process. In a quantum isochoric pro-
cess, the working substance is placed in contact with a heat
bath. No work is done in this process while heat is ex-
changed between the working substance and the heat bath.
This is the same as that in a classical isothermal process. In
a quantum isochoric process the occupation probabilities P,
and thus the entropy S change, until the working substance
finally reaches thermal equilibrium with the heat bath. In a
classical isochoric process the pressure P and the tempera-
ture T change, and the working substance reaches thermal
equilibrium with the heat bath only at the end of this process.
For example, if the working substance is chosen to be a
particle confined in a infinite square well potential, no work
is done during a quantum isochoric process when heat is
absorbed or released, and the occupation probabilities in ev-
ery eigenstate satisfy Boltzmann distribution at the end of the
isochoric process.

E. Quantum adiabatic process

A classical adiabatic thermodynamic process can be for-
mulated in terms of a microscopic quantum adiabatic ther-
modynamic process. Because quantum adiabatic processes
proceed slow enough such that the generic quantum adia-
batic condition is satisfied, then the population distributions
remain unchanged, dP,=0. According to Eq. (6), d0=0,
there is no heat exchange in a quantum adiabatic process, but
work can still be nonzero according to Eq. (7). A classical
adiabatic process, however, does not necessarily require the

occupation probabilities to be kept invariant. For example,
when the process proceeds very fast, and the quantum adia-
batic condition is not satisfied, internal excitations will likely
occur, but there is no heat exchange between the working
substance and the external heat bath. This thermodynamic
process is classical adiabatic but not quantum adiabatic. Thus
it can be verified that a classical adiabatic process includes,
as a subset, a quantum adiabatic process; but the inverse is
not valid [17].

The properties of both classical and quantum thermody-
namic process are listed in Table I, to facilitate the compari-
son between these two processes. The table indicates if heat
is absorbed or released (first row), if work is done (second
row), and which quantity varies (indicated by “VAR”) and
which are invariant (indicated by “INV”) in the third row.

III. QUANTUM CARNOT ENGINE CYCLE

In the preceding section, we defined quantum isothermal
processes. Based on this definition, in this section, we study
the QCE cycle and its properties. The QCE cycle (see Fig. 2
for an example of a QCE based on a two-level system), just
like its classical counterpart, consists of two quantum iso-
thermal processes (A — B and C— D) and two quantum adia-
batic processes (B— C and D—A). During the isothermal
expansion process from A to B, the particle confined in the
potential well is kept in contact with a heat bath at tempera-
ture 7, while the energy levels of the system change much
slower than the relaxation of the system, so that the particle
is always kept in thermal equilibrium with the heat bath.
Below, we consider both cases: two-level and multilevel sys-
tems.

A. Thermodynamic reversibility of the quantum Carnot
engine cycle

It is well known that quantum mechanical reversibility is
associated with quantum mechanical unitary evolution. Dif-
ferent from quantum mechanical reversibility, thermody-
namic reversibility accompanies the heat bath and the effec-
tive temperature of the working substance. In this paper we
focus on the thermodynamic reversibility.

We emphasize that, in order to ensure that the cycle is
thermodynamically reversible, two conditions on the quan-
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FIG. 2. (a): A schematic diagram of a quantum Carnot engine
based on a two-level quantum system. A is the level spacing be-
tween the two energy levels. P, is the occupation probability in the
excited state. The process from A to B (C to D) is the isothermal
expansion (compression) process, in which the working substance
is put in contact with the high (low) temperature heat bath. The
processes from B to C and from D to A are two adiabatic processes.
(b): Pressure-volume (P-V) diagram for a classical Carnot engine
with ideal gas as the working substance. The process from 1 to 2
(from 3 to 4) is the classical isothermal expansion (compression)
process with temperature T}, (7)), and the process from 2 to 3 (4 to
1) is the classical adiabatic expansion (compression) process. V,
and V3 are the volume of the working substance at 2 and 3, respec-
tively. (c) Temperature-entropy (7-S) diagram [27] for both a quan-
tum Carnot engine based on a two-level quantum system and a
classical Carnot engine with ideal gas as the working substance.
This 7-S diagram bridges the quantum and classical Carnot engine.
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tum adiabatic process are required: (1) after the quantum
adiabatic process (B— C), we can use an effective tempera-
ture 7 to characterize the working substance, i.e., the work-
ing substance still satisfies the Boltzmann distribution after
the quantum adiabatic process; and (2) the effective tempera-
ture 7, of the working substance, after the quantum adiabatic
process, equals the temperature 7; of the heat bath of the
following quantum isothermal process (C— D). When either
condition is not satisfied, a thermalization process [24,25] of
the working substance is inevitable before the quantum iso-
thermal process (C— D). In the thermalization process, the
total entropy increase of the working substance plus the bath
is nonzero. Hence, this thermalization process is irreversible.

It can be proved that the above two conditions are equiva-
lent to the following two conditions: (i) all energy gaps were
changed by the same ratio in the quantum adiabatic process,
i'e" En(B) _Em(B) =)\[En(c) _Em(c)] and En(A) _Em(A)
=\E,(D)-E,D)] (n=0,1,2,...); and (ii) the ratio of the
change of the energy gaps in the adiabatic process (from B to
C or from A to D) must equal the ratio of the two tempera-
tures of the heat baths, i.e., N\=T,/T).

First, it is easy to see that these two conditions, (i) and
(ii), listed above are sufficient for the previous conditions (1)
and (2) presented initially. Next, we prove that the two con-
ditions (i) and (ii) are also necessary for the two conditions
(1) and (2). Let us assume that the working substance is in
equilibrium with a heat bath at temperature 7}, at the instant
B before the adiabatic process (B— C). In this case the quan-
tum state is described by a density operator

pB) =2 S expl- BEBInBNAB]. (1)

After the adiabatic process is completed, at instant C in Fig.
2, the eigenenergies of the working substance become E,(C),
and the working substance reaches an effective temperature
T;. The occupation probabilities P, of the working substance
are kept unchanged during the adiabatic process (B— C),
and they satisfy the Boltzmann distribution. Thus, for any
eigenstates |n) and |m), the occupation probabilities P, and
P, satisfy

P.(B) _expl=BiEB)] _ P,(C)  expl- BE(C)]

Pm(B) - eXP[_ IBhEm(B)] - Pm(C) - eXP[_ IBZEm(C)] .
(12)

That is,
E(O-E0= BB - BB (13)
h

for any m,n. Equation (13) is just a combination of condi-
tions (i) and (ii). Thus we have proved that the two condi-
tions (i) and (ii) are sufficient for the previous conditions (1)
and (2).

Hence, we have proven that (i) all energy gaps change by
the same ratio in the quantum adiabatic process, and (ii) this
ratio equals to the ratio of the temperatures of the two heat
baths, summarized in Eq. (13), are sufficient and necessary
conditions for the QCE to be thermodynamically reversible.
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We would like to mention that these two conditions (i) and
(ii) (mathematical requirements) can be satisfied in some re-
alistic physical systems. Examples of QCEs based on some
concrete physical systems will be discussed in Sec. VI.

B. Work and efficiency of a quantum Carnot
engine cycle

Now we analyze the operation efficiency 7 of the QCE
introduced above. For simplicity, instead of applying Eq. (6),
we use dQ=TdS to calculate the heat exchange dQ in any
quantum isothermal (QIT) process. Because the temperature
of the heat bath is kept invariant in the quantum isothermal
process, the heat absorbed Q2" and released QU in the
quantum isothermal expansion and compression processes

can be calculated as follows:

AT =17,[S(B) - S(A)] >0, (14)

0QT=T[S(C)-S(D)]>0, (15)

out

where 7, and T, are the temperatures of the two different
heat baths, and

exp[— BtEn(l)]

o BED-MZ). (16)

S(i) = -k

are the entropies of the working substance at different in-
stants i=A, B, C, D [see Fig. 3(a)]. Here, B, p=1/kzT),
Bc.p=1/kgT,. In obtaining the above result, we have used the
Boltzmann distribution of a thermal equilibrium state, i.e.,
p=(1/2)2, exp(-BE,) | n)(n|, where Z=Tr exp(-BH) is the
partition function. Of course, Q2" and QT can also be ob-
tained through Eq. (6) in a quantum manner [this will be-
come clear later on, see Egs. (36) and (37)]. These equivalent
approaches can describe the microscopic mechanism of a
classical Carnot engine cycle.

Now, we would like to calculate the work W done during
a QCE cycle and its operation efficiency 7c. From Egs. (14)
and (15) and the first law of thermodynamics we obtain the
net work done during a QCE cycle,

We= 02" - 02 = (1, - T)[S(B) - S(A)],  (17)

where we have used the relations S(B)=S(C) and S(A)
=S(D). This equivalence is due to the fact that the occupa-
tion probabilities and thus the entropy remain invariant in
any quantum adiabatic process. The efficiency 7. of the
QCE is

Wc T
7](::?:1_;}19 (18)
which is just the efficiency of a classical Carnot engine.
From Eq. (13) we see that the ratio of the temperature in the
efficiency [Eq. (18)] of the QCE can also be replaced by the
ratio of the energy gaps

E,(C)-E,(C)

" EB)-E,B)’ (19)

Nc=

This expression of the efficiency 7c in terms of the ratio of
the energy gaps resembles that of a QOE for a multilevel
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FIG. 3. (Color online) (a) A schematic diagram of a quantum
Otto engine based on a two-level quantum system. Dotted red and
dashed black curves refer to the isothermal processes. A, and A, are
the level spacings of the two-level system during the two isochoric
processes (A— B and C— D). Pi’ and Pi are the occupation prob-
abilities in the excited state. The processes from A to B and from C
to D are isochoric processes, while the processes from B to C and
from D to A are quantum adiabatic processes. 7(i), (i=A, B, C, D)
are the effective temperatures of the working substance at instant i,
and T(B)=T,, T(D)=T,. (b) Pressure-volume, (P-V), diagram of a
classical Otto engine. V), and V, are the volume of the working
substance in the two classical isochoric processes. The process from
1 to0 2 (3 to 4) is a classical isochoric heating (cooling) process, and
the process from 2 to 3 (4 to 1) is the classical adiabatic expansion
(compression) process. The temperature of the working substance at
2 and 4 equal to the temperatures of the two heat baths, 7}, and 7},
respectively. (c) Temperature-entropy (7-S) diagram [27] for both a
quantum Otto engine based on a two-level quantum system and a
classical Otto engine with ideal gas as the working substance. This
T-S diagram bridges the quantum and classical Otto engine.
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TABLE II. Quantum Carnot engines versus classical Carnot engines. Here “CIT” refers to “classical isothermal process” while “CA” is
an abbreviation for a ‘“classical adiabatic process.” “QIT” and “QA” refer to “Quantum isothermal process” and “quantum adiabatic
process,” respectively. Vs, Vi, E,(B), and E,(C) are defined in Fig. 2; v is the adiabatic exponent [27].

Strokes Requirement on the CA and QA Efficiency Positive-work condition
Classical CIT-CA-CIT-CA L_(& p=1-2 T,>T,
T, V3 Ty
Quantum QIT-QA-QIT-QA 1B OO N mn 7=1-7 T,>T,

T,” E(B)-E,(B)

case in Refs. [3,17] [see also Eq. (24) below]. However, in
spite of the apparent similarities between these two expres-
sions for the efficiencies, we emphasize that they are quite
different. Here, E,(B)-E,(B) and E,C)-E,(C), in Eq.
(19), are the energy gaps at the beginning (B) and at the end
(C) of the quantum adiabatic expansion process (B— C). In
the expression for the efficiency 7, for a multilevel QOE,
however, the energy gaps are those in two quantum isochoric
processes [3,17]. Hence, the efficiency in Eq. (19) for a QCE
is quite different from that for a QOE, even though they both
look similar. Further discussions on this will be given in Sec.
Iv.

In order to extract positive work from the bath, Eq. (18)
imposes a constraint, 7;,> T}, on the temperatures of the two
heat baths. This constraint, known as the positive-work con-
dition (PWC), is the same as that of its classical counterpart.
What is more, the schematic temperature-entropy (7-S) dia-
grams for both a QCE cycle and a classical Carnot engine
cycle are the same [see Fig. 2(c)]. For the above reasons, we
believe it is convincible that our QCE model is a quantum
mechanical analogue of a classical Carnot engine. We com-
pare the properties of a QCE and a classical Carnot engine
and list them in Table II.

C. Internal energy

It is well known that an ideal classical Carnot engine
cycle consists of two classical isothermal and two classical
adiabatic processes. When the working substance is the ideal
gas, the internal energy of the working substance remains
invariant in the classical isothermal process, because the in-
ternal energy of the ideal gas depends on the temperature
only. This assumption for classical isothermal processes
based on classical ideal gas could be true for a classical
Carnot engine using a working substance other than an ideal
gas. But in the quantum version, the quantum isothermal and
quantum adiabatic processes should be redefined microscopi-
cally based on quantum mechanics. In principle, the classical
result could change when considering the quantum nature
(discrete energy levels) of the working substance.

We now would like to verify whether the internal energy
of the working substance remains invariant during the iso-
thermal process. At the four instants A,B,C, and D of the
QCE cycle (see Fig. 2), the internal energies are, respec-
tively,

U(i) =Tr[p(i)H(i))], i=A,B,C,D. (20)

In Appendix B we prove that U(A)# U(B) and U(C)
# U(D) for some QCE cycles based on several experimen-

tally realizable systems. Hence, in the quantum version of a
Carnot engine, we cannot simply assume that the heat ab-
sorbed (released) by the working substance is equal to the
work done by (on) the working substance in the isothermal
process, as we do in classical Carnot engine with the ideal
gas as the working substance. This observation is crucial for
the following discussion.

Here we would like to indicate that, the quantum isoener-
getic process in Refs. [7,8] is not a quantum analogue of the
classical isothermal process of a classical Carnot engine, be-
cause it requires the temperature of the heat bath to change.
Thus the thermodynamic cycle described in Refs. [7,8] is
actually not a QCE cycle.

IV. QUANTUM OTTO ENGINE CYCLE

In practice, the heat engines most widely used in automo-
biles, the internal combustion engine, operate using Otto-
cycle engines [18], which consist of two classical isochoric
and two classical adiabatic processes. Similar to the Carnot
engine, the quantum analogue of the classical Otto engine is
also proposed in Refs. [3,9,10,17,19]. The QOE cycle con-
sists of two quantum isochoric and two quantum adiabatic
processes [4,15-17] (see Fig. 3 for a schematic diagram of
QOE based on a two-level system).

A. Work and efficiency

In the quantum isochoric heating process from A to B (see
Fig. 3), no work is done, but heat is absorbed. The heat Qi%lc
absorbed by the working substance is

B
oY= f E,dP,=> E'[P,(B)-P,A)], (1)
n A n

where EZ is the nth eigenenergy of the system in the quantum
isochoric heating process from A to B. Similarly, we obtain
the heat released to the low temperature entropy sink in the
quantum isochoric cooling process from C to D,

D
0%c=-> f E,dP,= > E\[P,(C)- P,(D)], (22)
n C n

where Eﬁ, is the nth eigenenergy of the system in the quantum
isochoric cooling process. We would like to point out that in
calculating Q' and QYC, we cannot apply Eqgs. (14) and
(15), because dQ=TdS is only applicable to the thermal
equilibrium case, while in the quantum isochoric process, the

heat bath and the working substance are not always in ther-
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mal equilibrium, i.e., this process is not thermodynamically
reversible (for a detailed discussion see below).

As mentioned above, in order to construct a QCE, all
energy gaps must be changed by the same ratio in a quantum
adiabatic process. But for a multilevel QOE, there is no such
constraint (see Ref. [17]) because we do not have to ensure
the reversibility of the QOE cycle. Nevertheless, to compare
the QOE with the QCE, we only consider a special case of
QOE where all its energy gaps change by the same ratios as
in the quantum adiabatic processes, i.e., E'—E" =a(E. - E' ),
(n=0,1,2,...). When we choose Eh=E6=0, i.e., the ground-
state eigenenergies as the energy reference point, we have
E"=aE'. Similar to the QCE, the occupation distribution re-
mains invariant in the two quantum adiabatic processes, i.e.,
P,(B)=P,(C) and P,(A)=P,(D), and accordingly the en-
tropy remains invariant in the quantum adiabatic processes
S(B)=S(C) and S(A)=S(D).

Based on this fact, and Egs. (21) and (22), we obtain the
net work Wq done during a QOE cycle

Wo=02¢ -0 =2 (El - E)[P,(B) - P,(A)], (23)

and the operation efficiency 7, of the QOE cycle

[ l
_ En_Em
E,~E,

Wo
Mo="qic =

in

S -t (24)

Here, @>1 since E'>E!. This result, which stands for a
special multilevel QOE (all energy gaps change by the same
ratio in the quantum adiabatic process), is a generalization of
the two-level QOE [3,17]. Let us recall the PWC of the spe-
cial multilevel QOE [17] mentioned above. From Eq. (23),
the PWC for the special multilevel QOE is

Th > aT[. (25)

This is obviously different from that of a QCE, where the
PWC is simply T),>T,.

Note that the first QHE model, initially proposed in Ref.
[1], is actually a QOE, because its efficiency and its PWC are
given by »=1-v,/v, and T,>(v,/v,)T, where v, and v,
are the two energy gaps of the working substance, and 7, and
T, are the temperatures of the two heat baths, respectively.

B. Classical versus quantum Otto engines

Below we prove that the operation efficiency 7g in Eq.
(24) of a QOE, is also equal to the efficiency 778L of a clas-
sical Otto engine. For simplicity, here we only consider a
two-level system as the working substance (the result can be
generalized to multilevel systems if all the eigenenergies of
the multilevel system change in the same ratios as in the
quantum adiabatic process [26]). For a two-level system (see
Fig. 3), when the temperature T of the heat bath is fixed, the
occupation probability P, of the excited state |e) in thermal
equilibrium is a monotonically decreasing function of the
level spacing A between the two energy levels [3,12,13]. Its
inverse function reads

PHYSICAL REVIEW E 76, 031105 (2007)

1
A3=kBT91n(F)—1>, o=h, L. (26)
As mentioned above, the efficiency 7 in Eq. (24) of a QOE
cycle represented by the rectangle (A-B-C-D) (see Fig. 3) is

A
=1-—. 27
7o A, (27)
From Egs. (26) and (27) and Fig. 3, we can see that the
efficiency 7, of the QOE cycle can be rewritten as

o _,_ 1D

T(B) ~  T(A)’ (28)

no=1-
where T(i), with i=A, B, C, and D, are the effective tempera-
tures of the working substance at the instants A, B, C, and D
indicated in Fig. 3. Here, we have used the relation
A(C)/A(B)=T(C)/T(B) because of the fact P,(C)=P,(B)
=P" and Eq. (26), and similarly A(D)/A(A)=T(D)/T(A). In
the QOE cycle, the effective temperatures T(B) and T(D) of
the working substance at instants B and D equal the tempera-
tures of the two heat baths T(B)=T, T(D)=T,.
As for a classical Otto engine, the classical efficiency 7;81‘
is [27]

vV, \7!
o =1~ (ﬁ) : (29)
1

where V; and V), are the volumes of the classical ideal gas in
the two classical isochoric processes (see Fig. 3), and vy is the
classical adiabatic exponent [27]. Because TV~ is constant

during a classical adiabatic process, we can therefore elimi-
nate the volumes in Eq. (29) as

nCL=1—5=1—Q, (30)
T, T,

where T, T,, T3, and T, are the temperatures of the working
substance at instants 1, 2, 3, and 4, and the temperatures at
instants 2 and 4 are equal to the temperatures of the two heat
baths 7,=T),, T,=T,. This is in very good agreement with the
result of a QOE cycle in Eq. (28). Thus we proved that the
efficiency of a QOE also equals its classical counterpart.
Moreover, similar to Carnot engines, we plot the schematic
temperature-entropy (7-S) diagrams for both a QOE cycle
and a classical Otto engine cycle in Fig. 3(c). The similarity
of the two 7-S diagrams also supports our definition of the
QOE. Comparisons between the QOE and the classical Otto
engine are listed in Table III.

C. An alternative quantum Otto engine

Before concluding this section, we would like to revisit an
alternative QOE cycle similar to that in Ref. [28] and that
given most recently in [18]. As illustrated in Fig. 4, we con-
sider two two-level systems (two qubits) as the working sub-
stance, which are denoted by qubit S and qubit D, and the
level spacings of the two qubits are Ag and Ap, respectively.
The temperatures of the two heat baths are T and T. With-
out loss of generality, here we choose Ts>Tp and Ag>Aj,.
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TABLE III. Quantum Otto engine versus classical Otto engine. Here “CIC” and “CA” refer to “classical isochoric processes” and
“classical adiabatic processes,” respectively; “QIC” and “QA” refer to “Quantum isochoric processes” and “Quantum adiabatic processes,”
respectively. Also, V;, and V; are the volumes of the working substance (classical ideal gas) in the two classical isochoric processes; vy is the
classical adiabatic exponent [27]. T(i) (i=A, B, C, D) and T} (k=1, 2, 3, 4) are defined in Fig. 3.

Strokes Efficiency Positive-work condition
Classical CIC-CA-CIC-CA CL_q_(lyr-i_,_no_. 1 Yiyr1
! Mo —1_(‘/’) l_T(B)_ _T(A) Th>Tl(Vh)
-QA-QIC- S R S A
Quantum QIC-QA-QIC-QA To=1-3 =1-7=1-7 7,>T/ A,)

The alternative QOE cycle consists of two steps: (1) let
the two qubits decouple from each other and contact their
own heat baths, respectively, until they reach thermal equi-
librium with these two heat baths; and (2) switch on the
interaction between the two qubits and implement a SWAP
operation between them. These two steps are shown in Figs.
4(a) and 4(b). The density matrices of the two qubits after
step (1) are

p(1) = 10)(0] +exp(- BANDAIL] (i=5.D),

(31)

where B;=1/kgT;, and for simplicity we have chosen the
eigenenergy of the ground state as a reference point. After
step (2), the density matrices become

ps(2)= —TI00ls + expl- BoAn) (115
D

1
pp(2) = Z_S[|O>D<0|D +exp(= BsAg) | Dp(1]p].  (32)

After these two steps, the two qubits are decoupled and put
into contact with their own bath, and a new cycle starts.
The key point of this alternative QOE cycle is that the

| 1

t 1
-4
ALK

FIG. 4. (Color online) A schematic diagram illustrating an alter-
native quantum Otto engine. This QOE cycle consists of two steps:
a SWAP between the two two-level systems (two qubits), shown in
(b), and a thermalization with their respective heat baths, shown in
(a). Step (c) indicates the transition from (b) to (a). The SWAP op-
eration in (b) replaces the two quantum isochoric processes in the
QOE cycle mentioned in the text and shown in Fig. 3(a).

SWAP operation takes place of the two quantum adiabatic
processes, while the thermalization process takes place of
two quantum isochoric processes. We can now calculate the
heat absorbed by the qubit S and heat released by the qubit D
in step (1),

Qin = Tt[Hpg(1)] - Tr{ Hps(2)]

1 1
= AS<Z—exp(— BsAs) - Z_eXP(— ﬁDAD)>v (33)

N D
Oou= TY[HPD(Z)] - TI”[HPD(l)]

- 8 Lexpt- i - el oty | 30

Zs Zp
The operation efficiency 7 of the QHE cycle can be calcu-
lated straightforwardly,

77=Qm Qoutzl_ﬁ’ (35)

Oin Ag

and the PWC is T¢> (Ag/Ap)Tp. Thus, this two-step cycle is
an alternative QOE cycle. We will revisit, in more detail, this
alternative QOE cycle in Sec. VII.

Let us here mention an alternative QCE of two qubits
based on a SWAP operation. This alternative QCE cycle con-
sists of three steps: (1) let the two qubits decouple and con-
tact their own heat baths and both experience quantum iso-
thermal processes, (2) switch on the interaction between the
two qubits and implement a SWAP operation, and (3) let the
two qubits decouple from each other and also decouple the
two qubits from their heat baths, and subject them to a quan-
tum adiabatic process. A similar QOE cycle and a QCE cycle
have been studied in Ref. [28], where the SWAP operation
was decomposed into three controlled-NOT (CNOT) opera-
tions.

V. RELATIONS BETWEEN QUANTUM OTTO
AND QUANTUM CARNOT CYCLES

In this section we discuss the relation between a quantum
Otto engine cycle and a quantum Carnot engine cycle. For
simplicity, here we use a two-level system as an example of
working substance. Our results about QHEs based on a two-
level system can be generalized to multilevel systems if all
the eigenenergies of the multilevel system change by the
same ratios in the quantum adiabatic processes [26].
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FIG. 5. A quantum Carnot engine cycle can be modeled as an
infinite number of small quantum Otto engine cycles. Here, Pﬁ‘, Pi,,
A, B, C, D, and T}, T; are defined in Fig. 2(a). The small rectangles
inside the QCE cycle (A-B-C-D) represent small QOE cycles. The
temperatures of the two heat baths of these QOE cycles are 7}, and
T, respectively, which are the same as that of the QCE cycle. For
similar discussions see also Refs. [3,13,15,16].

A. Quantum Carnot cycle derived from quantum Otto cycles

A QCE cycle can be decomposed into an infinite number
of small QOE cycles (see Fig. 5) [3,13,15,16]. Now we give
a concise and explicit proof about this observation. The heat
absorbed and released in the infinite number of infinitesimal
QOE cycles can be integrated by applying Egs. (21), (22),
and (26),

P,
Oin= Thfl In(P;' - 1)ar,, (36)
Pe

P';
Oou=T, f (In(P;' = 1)dP,. (37)
PE

Then we obtain the positive work W done during the infinite
number of infinitesimal QOE cycles (A-B-C-D) by making
use of Eq. (23),

W= 0= Qou= (T~ T) f “n(P;' = DdP,. (38)
P,

From Egs. (36) and (38) we can see that the efficiency of an
infinite number of infinitesimal QOE cycles is

n=m-=1-1 (39)
Oin T,

This is the efficiency of the QCE in Eq. (18). Thus we have
proved that a QCE cycle can be modeled as an infinite num-
ber of infinitesimal QOE cycles. However, a finite QCE
cycle and a finite QOE cycle cannot be equivalent because
one is reversible and the other one is not. When the two
cycles become infinitesimal, they can be infinitesimally close
to each other.

B. Quantum Otto cycle derived from quantum Carnot cycles

Conversely, a QOE cycle can also be modeled as an infi-
nite number of QCE cycles (see Fig. 6), but the temperatures
of the two heat baths of these small QCE are different. The

PHYSICAL REVIEW E 76, 031105 (2007)

A LT
NN B’
Ayl-—4A \\\\ T,
D: Tzl :C
' ' >
P PP

FIG. 6. A quantum Otto engine can be modeled as an infinite
number of small quantum Carnot engine cycles. Here P’Lf, Pé, 1,
and 7, are defined in Fig. 3(a). The small cycles inside the QOE
cycle A’-B'-C'-D' represent small quantum Carnot cycles. The
temperatures of the two heat baths (e.g., T,ll and Tll) of these small
QCE cycles are different from that (7}, and T;) of the QCE cycle.

quantum isochoric process A’ — B’ (C'—D’) can be mod-
eled as many small quantum isothermal processes with tem-
peratures T,ll (1), Ti (T,l), TZ (T,z),... (see Fig. 6),

T, <Tp<Tp< - <T)<T,, (40)

T,<T)<T;<--<T)/'<T). (41)

The heat absorbed and released in the infinite number of
infinitesimal QCE cycles can be obtained by applying dQ
=TdS and Eq. (26),

0, =f’“h !

P!
—S—————4s=A,| “dp,, 42
Pl kg In(P;' - 1) ’in ‘ “2)

fP? A1 A fPf
= | H——=——uds= dp,, 43
Qou P kBln(le -1) : Pl 43)

where we have used the relation dS=-kg[In P,~In(1
—P,)]dP,. We then obtain the positive work W done during
the infinite number of infinitesimal QCE cycles (A’-B’-C’-
D' in Fig. 6) by making use of Eq. (17),

W= 0p = Qou= (A, = A)(PL - P). (44)

From Egs. (42) and (44) we can see that the efficiency of an
infinite number of infinitesimal QCE cycles is
w { A,
7 Oin Ay
This is the efficiency of the QOE in Eq. (27). Thus we have
proved that a QOE cycle can be modeled as infinite number
of infinitesimal QCE cycles.

We would like to mention that the formula dQ=TdS is
applicable in Eq. (42) due to the fact that these infinite num-
ber of infinitesimal QCE cycles (with heat bath temperatures
T,ll, Tll; Tfl, TIZ;...) are thermal equilibrium (reversible) pro-
cesses since the entropy increase vanishes during these
cycles (see Appendix C). However, if we take the QOE cycle
as a whole, and the heat bath temperatures are 7j, and 77, this
process is a nonequilibrium (irreversible) process. Hence, the

(45)
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FIG. 7. (Color online) Schematic diagrams for a quantum Car-
not engine cycle (AB’CD’ red continuous line) and a quantum Otto
engine cycle (A’B'C'D’ blue dashed line) based on a two-level
system. Here, points B’ and D' are the same for both cycles. The
temperatures 77, and 7; of the two heat baths of the two QHE cycles
and the occupation probabilities PZ’ and Pi in two quantum adia-
batic processes are the same. The net work done during a cycle is
proportional to the area enclosed by the four curves which represent
the cycles.

formula dQ=TdS is not applicable here. This is why we
cannot apply Egs. (14) and (15) in calculating Qi?l[c and QOQ:S
in the QOE cycle in Sec. IV A.

C. Comparison of work and efficiency for quantum Otto
and quantum Carnot cycles

Having clarified the properties of the QCE and QOE, here
we now compare the thermodynamic properties of a QCE
cycle with that of a QOE cycle and study the relation be-
tween them. For the two QHE cycles (QCE cycle and QOE
cycle), we consider the case with the same heat baths (at high
and low temperatures T), and T}, respectively), and the same
occupation probabilities (PZ’ and Ple, respectively) in the two
quantum adiabatic processes (see Fig. 7).

First, let us compare the amounts of positive work done in
a QCE cycle and a QOE cycle under the same conditions
defined above. The positive work done during the QCE cycle
(here denoted by A-B'-C-D' in Fig. 7) can also be written as

We= f AP - A(TLPAP,.  (46)
’

while the work done during a QOE cycle is (here denoted by
A’-B'-C'-D’ in Fig. 7)

Pf_:
Wo= f} (A, —A)dP,. (47)
PE

From Fig. 7 we know for any P,e[P.,P"], we have
A(T,,P,)-A(T,,P,)>A,—-A, Hence, from Eqgs. (46) and
(47) we have W-> W, i.e., under the same conditions, the
work done during a QCE cycle is more than that during a
QOE cycle.

Next we consider the efficiencies of the QCE cycle and
the QOE cycle under the same conditions. From Eq. (27) we
know that the efficiency of a small QOE cycle can be rewrit-
ten as

PHYSICAL REVIEW E 76, 031105 (2007)

kpT, In[(P)~' = 1]
kT, In[(P)' = 1]

T, J 1
=1-t1-— lnln<—1—1) (P!~ P
T,| P, P

T, 9 1 L
=+ +—|Inn| = -1 [(P!-P)). 48
c Thﬁpg[n n<Pi )]( e =P (48)

70 =1

It can be verified that the second term on the right-hand side
(RHS) of Eq. (48) is negative. Thus we have proved the
inequality
=l-— < 1-—= 49

7o A, T, 7c (49)
for every small cycle. We conclude that, under the same
conditions, the QCE is more efficient than the QOE, even for
any finite cycle.

VI. ILLUSTRATIONS OF QUANTUM CARNOT ENGINE
AND QUANTUM OTTO ENGINE

As mentioned above, to construct a multilevel (including
two-level) Carnot-type QHE, two preconditions (mathemati-
cal results) are required: (1) all energy gaps change by the
same ratio in the quantum adiabatic process (when the work-
ing substance performs work); (2) the ratio of the energy gap
changes in the quantum adiabatic process should equal the
ratio of the temperatures of the two heat baths, so that the
thermodynamic cycle is reversible. Physically, these two
conditions can always be satisfied for a QHE based on a
two-level system, because there is only one energy gap in a
two-level system, we can always find a proper effective tem-
perature to characterize the working substance. Besides the
two-level system, the harmonic oscillator and a particle con-
fined in an infinite square well potential are two other ex-
amples that can illustrate the basic properties of the QCE and
the QOE. This is because in both cases all energy gaps
change by the same ratio when changing the parameters of
the system, and we can always use a proper effective tem-
perature to characterize the working substance in the quan-
tum adiabatic process, too. Below we calculate the amount of
positive work done during a thermodynamic cycle using
those working substances.

A. Two-level systems

Let us now consider a QHE based on a two-level system,
eg.,a spin—% system in an external magnetic field pointing
along the +z direction, the Hamiltonian of the working sub-
stance is

HTLs(i) == MB(i)(|T><T| - |i><l ), (50)

where B(i) is the strength of the external field at instant i, i
=A,B,C,D (see Fig. 2 and Fig. 3); M=ef/2mc is the Bohr
magnon; || ) and |1) indicate the spin-down (excited) state
and spin-up (ground) state, respectively. The thermal equilib-
rium state can be written as
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TABLE IV. Comparison of several properties of quantum Otto engines and quantum Carnot engines using the following guantum
substances as working substances: Two-level system (TLS), harmonic oscillator (HO), and a particle confined in an infinite square (IS)
potential. The operation efficiency 7, the positive-working condition (PWC), and the amount of work W extracted in a thermodynamic cycle

are listed (see Sec. VI).

Two-level system (TLS)

Harmonic oscillator (HO) Infinite square well (IS)

A w; L\2
70 1- 5 1- o 1- (L_h)
Quantum PWC A, W, (L;,)Z
OttO engine Th > ET/ Th > ;[T[ Th > Z( T[
Wo was Wi W
T T i
7c 1— 7 1- 7 1- 7
Quantum
Carnot PWC T,>T, T,>T, T,>T,
engine
We was wie W
L1 . . We® = (T, T)[S"°(B) - S"O(4)]. (56)
prs(i) = Z_.{GXP[BiMB(l)]|T><T| +exp[- BMB@)]| 1)L}, ¢ e
(i) The net work done during the QOE cycle can be obtained by
(51)  applying Eq. (23),

where Z(i)=exp[ B:MB(i)]+exp[-B:MB(i)] is the partition
function at instant i. Applying Eq. (16) we obtain the entropy
of the working substance

STS(i) = ky In[Z(i)] + kpB;MB(i)tanh[ B;MB(i)]. (52)

Then from Egs. (14), (15), and (17) we obtain the net work
done by the working substance during a QCE cycle,

WES = (1, = T)[S™5(B) - S5(4)]. (53)

The net work done during the QOE cycle can be calculated
by applying Eq. (23),

TLS _ — ! - 1 )
Wo ™ =4y A')<1+exp<ﬂhAh> 1+exp(Bid))

(54)

Another example of QHE based on a two-level system is

a photon-Carnot engine [5,6,11]. After performing a similar
calculation we recover the operation efficiency 1-7,/T}, in

Eq. (18) and the PWC T,>T,. Hence, this photon-Carnot
engine is actually a two-level QCE.

B. Harmonic oscillator

For a QHE based on a harmonic oscillator with the
eigenenergies E,(i)=(n—-1/2)hw(i), by applying Eq. (16),
we derive the entropy SHO(i) of the working substance as

SHO(i) = — kp In{1 — exp[- Bhw(i)]}

+kpBho(i) (55)

1
exp[ Bhw(i)] -1’
and the work done during a QCE cycle as

HO _ - 1 - : )
Wo~ =fi(w, wl)(exp(ﬂhﬁwh) -1 exp(Bifiw) -1/

(57)

C. Particle in an infinite square potential well
For a QHE based on a particle confined in an infinite
square (IS) potential, the eigenenergies are E,(i)=1yn?
where 7i:(77'ﬁ)2/(2mL?); m and L; are the mass of the par-
ticle and the width of the square well at instant 7, respec-
tively. The entropy of the working substance can also be
calculated by applying Eq. (16),

k 1 T
SIS(i)=EB+kB 1n<§\/a). (58)

In obtaining Eq. (58) we make an approximation

> exp(yn?) = f ) exp(yn?)dn. (59)
n=1 0

So the work done during a QCE cycle can be expressed as
(17),

WE = (T, - T)[S"(B) - S5(A)], (60)
while the net work done during a QOE cycle is (23),
1 1 )
—_— . (61)
By (Bw)?

In order to better compare the results, they are all listed in
Table IV.

Before concluding this section, we would like to mention
that, our current QHE model can only be implemented with

T
Wg: g(')’h_ 7’1)(
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quantum systems with all energy levels being discrete (all
eigenstates being bond states). Besides the harmonic oscilla-
tor and the infinite square well system, we can find other
potentials that satisfy discrete spectral structure requirement
to implement our QHE. However, we cannot deal with quan-
tum systems with continuous spectral structure, e.g., a par-
ticle in a Coulomb potential or a finite square well. We will
extend our current study to quantum systems with continu-
ous spectral structure in future research.

VII. MAXWELL’S DEMON AND QUANTUM
OTTO ENGINE

In the above discussions, we give clear definitions of mi-
croscopic QCE and QOE cycles through clarifying the basic
quantum thermodynamic processes (e.g., quantum isochoric
process and quantum isothermal process). These results indi-
cate that the properties, such as the operation efficiency, of
macroscopic (classical) heat engines can be obtained from
the microscopic (quantum) level as long as we clarify the
basic thermodynamic processes microscopically. In the pre-
vious discussions, our QCE and QOE models show no con-
tradiction with the thermodynamic laws.

In one of our recent studies [18], we proposed a Max-
well’s demon-assisted quantum thermodynamic cycle to
study the function of a Maxwell’s demon, and we also stud-
ied how it affects the second law of thermodynamics. It is
interesting that when the restoration of the demon is properly
included into the QHE cycle, the efficiency of the Maxwell’s
demon assisted QHE cycle has the same form as that for a
QOE derived previously in Eq. (27). Hence, the apparent
violation of the second law due to Maxwell’s demon is pre-
vented. In this section, we also would like to study the in-
trinsic relation between these two kinds of quantum thermo-
dynamic cycles. We would also like to add some details
about the Maxwell’s demon-assisted quantum thermody-
namic cycle proposed in Ref. [18] to better demonstrate our
main idea.

A. Maxwell’s demon erasure not included
in the thermodynamic cycle

We first analyze a single-reservoir thermodynamic cycle
with external control based on the effective temperature de-
fined above. It can be proved that the property of this cycle is
similar to that of the QHE cycle proposed in Ref. [18]. Our
thermodynamic cycle consists of three steps: (1) quantum
rotation, (2) decoherence, and (3) thermalization.

After the thermalization process, the state of the two-level
system (with the ground state |0), the excited state |1) and
the level spacing A) can be described by a density matrix

p(0) = Py [1{1] + P|0)0], (62)

where the probability distributions P; and Py, in the two-level
system are determined by the temperature 7; of the heat res-
ervoir and the level spacing A. Then, the two-level system,
driven by an external field (we do not treat it as a part of the
system for the moment), undergoes a rotation,
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[1) — |1) = cos |1) + sin 60),

|0) — |0) = —sin 6]1) + cos 6]0). (63)

If the time interval of this rotation is much shorter than the
relevant time of the thermalization, the state p(0) of the two-
level system becomes

p(1) = P{[1){1]| + P5|0)0] + ODT, (64)
where

P} =P, cos’0+ P, sin’0,

Py =P, sin’0+ P, cos>6, (65)

and ODT denotes the off-diagonal terms, which disappear
rapidly (pure dephasing) due to the coupling between the
two-level system and the reservoir. Actually two effects
(dephasing and dissipation) occur when the two-level system
is coupled to the reservoir [29]. The first process occurs
much faster than the second one, and thus we can consider
the two effects separately. After considering dephasing (but
before considering dissipation), the state p(1) of the two-
level system becomes

p(2) = Pi[1){1] + P;|0)0]. (66)

This state is obviously not in equilibrium with respect to the
reservoir at temperature 7;. But we can imagine there is such
a reservoir at temperature 7}, which can be expressed as

A
Th(Po,Pl,a) = k_ In

. ( P, sin?6+ P, cos>6
B

P, cos’6+ P, sin’6

). (67)

This effective temperature T,(P, P, 6) possesses some ex-
otic features. For example, when 0=m/2, P{=P,, and P,
=P,. This means that 7,=-T7, is a “negative temperature”
since there exists a population inversion P| = P|. Only when
Py>P|, T, is positive. Finally, the two-level system is put
into contact with the heat bath for a sufficiently long time.
After the thermalization process, the state p(2) returns to
p(0), and a thermodynamic cycle is finished and the two-
level system seems to extract work from a single heat bath.
We can imagine it as a thermodynamic cycle between two
reservoirs with the temperature 7; and a virtual temperature
T). Actually contradictions to the second law can appear due
to this “negative temperature.”

It is not surprising that the above result (a contradiction to
the second law) appears since we do not include the control-
ler for the rotation operators shown in Eq. (63). This result is
very similar to those single-particle heat engines assisted by
a classical Maxwell’s demon proposed by Szilard.

Now, let us describe a new version of Szilard single-
particle heat engine (see Fig. 8). The working substance of
the QHE is a spin (two-level system) with ground state |0),
and excited state |1). The level spacing is A. We first put the
two-level system into a heat bath at temperature 7. After a
sufficiently long thermalization process, the spin reaches a
thermal equilibrium state, which can be described by p(0),
similarly defined as above. Second, a demon performs a
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-0—0— -0—0—0- -O—=—0+
Initial State First Step Second Step

FIG. 8. (Color online) Schematic diagram of the two-level ver-
sion of the Szilard single-particle heat engine. An invisible demon
detects the state of the two-level working substance and then con-
trols it to do work: when the system is in the excited state, the
demon makes the working substance flip to the ground state (the
first step); when the system is in the ground state, the demon does
nothing for the working substance. After these operations the work-
ing substance is brought in contact with a very large heat bath and
then thermalized into its initial state (the second step).

measurement. If the measurement result is confirmed that the
system is in its upper state, then the spin is flipped and posi-
tive work is done by the spin with an amount A. If the mea-
surement result confirms that the system is in its lower state,
then no work is done. Then the system is put into contact
with the heat bath and a new cycle starts. This is a two-step
Maxwell’s demon-assisted QHE. A similar discussion has
been given in Ref. [3]. It is easy to see that the net effect of
this QHE is to absorb heat from a single heat bath and con-
vert it into work. On average, the net work done per cycle is
PA. This is a perpetual machine of the second kind. This
apparent violation of the second law is seen because the era-
sure of the demon is not included into the QHE cycle.

B. Maxwell’s demon erasure included
in the thermodynamic cycle

In Ref. [18], we have demonstrated that, when the erasure
of the information stored in the Maxwell’s demon is consid-
ered into the QHE cycle, the apparent violation of the second
law does not hold. That is, there is no violation of the second
law even in the existence of such Maxwell’s demon.

To show the above observation, let us consider in more
detail a thermodynamic cycle including the Maxwell’s de-
mon (see the Fig. 9). Let us explain each step of the QHE
cycle proposed in Ref. [18]. First, two qubits (two-level sys-
tems) S and D are decoupled and separately coupled to two
heat baths with different temperatures 75 and Tp. After a
period of time longer than both the dephasing time 7, and
the relaxation time T, they are thermalized to two equilib-
rium states pg(1) and pp(1),

pr(1) = PE1)(1] + P2[0)(0

, (68)

for F=S and D, respectively. The joint thermalized state
p(1)=ps(1) ® pp(1) of the total system with S plus D can be
written as
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FIG. 9. (Color online) Schematic illustration for the Maxwell’s-
demon-assisted quantum heat engine with four steps: (a) Both the
QHE of the two-level system and a demon is hidden in the “piston”
as another two-level system is initialized in thermal equilibrium
states with different temperatures; (b) the demon makes a quantum
nondemolition measurement about the state of the two-level system
S with a CNOT operation: when § is seen in the excited state it
records this information through a transition from its ground state to
the excited state; when § is in its ground state, the demon remains
in its original state; (c) according to the information recorded by the
demon, the demon can enable the system to operate through another
CNOT logical gate: If the demon was encoded in the excited state it
will make the system flip; otherwise it enables the system to re-
main; (d) both the system and the demon are brought into contact
with their own heat baths and then thermalized with different tem-
peratures from their own initial states, respectively. During this pro-
cess, the information stored in the demon is totally erased and the
entire system completes a quantum thermodynamic cycle.

1’1><1’1
0,0%(0,0

+Pgp|1,01,0 0,1)0,1

. (69)

p(1) =Py}, +Pgp

0,0
+ PS’D

where we have defined the direct product of the eigenstate of
the two qubits

7.9)Y=|ps®lq")p (q.9'=0,1), (70)

and the joint probabilities Pg:qD/ = PféP;’)’,.

Second, two consecutive unitary operations: a CNOT op-
eration flipping the demon states only when the working sub-
stance system is in its excited state [28], and the demon
controls the system to do work. Physically, the system expe-
riences a conditional evolution (CEV). The changes of the
states in the two operations can be expressed as follows:

0,0> CNOT |070> CEV

0,0),

0,1> CNHOT |O,1> CEV |6’1>’
(71)

190> CI\LOT |1’1> CEV |T’l>9

170>’

1,1) cNoT |1’0> CEV

where |0) and |1 are defined in Eq. (63). These two subpro-
cesses can be realized with two quantum nondemolition
Hamiltonians

031105-13



QUAN et al.

Henor=Hs_p, Hegyv=Hp_s, (72)

where

HAﬂB=§(1 +od)®db (73)

is a typical CEV Hamiltonian with A controlling B. It pro-
duces a time evolution of the system B as a quantum rotation
defined by Eq. (63) with #=gz, when the system A is initially
prepared in |1),. Here, o‘jF, F=A,B (j=x,y,z), are the Pauli
matrices of the two-level system A and B. Obviously the
CNOT operation on the demon is given by the time evolution
produced by Henor With 6=/2. Heyor performs a quantum
nondemolition measurement of the state of the working sub-
stance S.

After this CNOT operation, the density matrix changes
from p(1) to

p(2) = cvot{p(1)}
= Py p|1,0%1,0
+ P)0,0%0,0

+Pgp|L 11,1 0,1)0,1

. (74)

0.1
+PS’D

From Eq. (74) we can derive the reduced density matrices
ps(2) and pp(2) of the working substance and the demon

ps(2) = Trp[p(2)] = Ps(l) (75)

and

pp(2) = Trg p(2)]= (pgp + PIHIONO| + (pgh + pp) 1)1
(76)

s

respectively. During this process, the system S remains in its
initial state while the demon acquires information. Mean-
while, the internal energy changes at the expense of using an
amount of work W,

Wp=Ti{Hpp(2)] - Ti[Hpp(1)] = Ap(P), - Py — PS1).
(77)

From Egs. (69) and (74) we see that the total entropy of §
and D does not change during the CNOT operation

S(2) == kg(Py}, In Pyp,+ Py In P+ PS In PS),
+ B3 n PA%)
= —kp(PiIn Py + P3In PY) — kp(P}, In P}, + P In PY)
= Sg(1) +Sp(1) = S(1). (78)

Hence, our model verifies the prediction in Refs. [33,34] that
a measurement does not necessarily lead to entropy increase.
Also, we know from Eq. (75) that the entropy of S during the
CNOT operation does not change,

S5(2) = Ss(1). (79)

But the entropy of D changes as

PHYSICAL REVIEW E 76, 031105 (2007)

3Sp=Sp(2) = Sp(1)
=~ ksl (Pgp + PSp)In(Pgp + PSp) + (Py
+ PEpIn(Pg) + Pyp) ]+ kp(Pp In Pl + P In P).
(80)
We would like to point out that the mutual entropy
Su(2) =Sp(2) +85(2) = S(2) =Sp(2) = Sp(1) ~ (81)

does not vanish (it vanishes before this CNOT operation). And
this nonvanishing mutual entropy can be used to measure the
information acquired by the demon about the system [30].

Next we consider the changes of entropy and energy after
the quantum control (the CEV) process. The state of the de-
mon and the working system after the CEV is

p(3) = cev{p(2)}, (82)
and then,
p(3) = Pyp|1,0(1,0| + PgP| T, 1T, 1] + P10, 1)0, 1
+ P)0,0%0,0[. (83)

The reduced density matrices of the working substance pg(3)
and the demon pp(3) are, respectively,

ps(3) = Trp[p(3)]= Py TX(T| + PY 1 0)0] + Py p|1)(1]
+ Pl0)0| (84)
and

pp(3) =Trgp(3)] = pp(2). (85)

Similarly, the energy change (work performed by the work-
ing system) during this process is

Ws=Tt[Hps(2)] - Tr[Hpy(3)]
= Ag(P§— Py, — PEYIAIDP = PELIOIDP).  (86)

In particular, when we choose #=m/2, the CEV is a CNOT,
and the reduced density matrix of S can be written as

ps(3) = Pp|1)(1| + PD|0X0], (87)

and the entropy of the system is
Sg(3) = —kp(P}, In Py, + P In PY) = S,(1).

So the change of the entropy of the working substance in the
CEV process is

S5 =S5(3) = S5(2) = Sp(1) = Ss(1), (88)

where we have used Eq. (79). But from Egs. (78), (82), and
(85), we know that both the total entropy of S plus D and the
entropy of the demon D do not change, i.e.,

S(1)=5(2)=50),

Sp(3)=5p(2). (89)

Finally, S and D are decoupled and put into contact with
their own baths, and a new cycle starts. In the thermalization
process, no work is done, but heat is exchanged between the
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heat baths and S and D. The thermalization process is an
information-erasure process. This kind of zero-work erasure
with a low temperature reservoir was first introduced in Ref.
[31], and studied afterwards in Ref. [32]. In the thermaliza-
tion process the heat absorbed by S is

Oin = Tr[Hps(1)] - Tr[Hpy(3)]
= As(Psp = PyplIDE = PoplODP),  (90)
and the heat released by the demon D is

Qou =T Hpp(3)] - T Hpp(1)] = Ap(Pg + P§ 1 — Pp).
(1)

Now we include the erasure of the memory of Maxwell’s
demon into the thermodynamic cycle, and we will show that,
under certain conditions, our composite QHE is equivalent to
a simple QOE.

For each cycle described above, we are now able to cal-
culate the work W performed by the heat engine

W=Ws = Wp = As(Psip = Pypl1DP - PO D)
— Ap(Pgh = Pyp). (92)
It can be checked that in the thermodynamic cycle W=0;,

—Qou This is just the first law of thermodynamics. The
positive-work condition can be derived from Eq. (92),

A
Ts= TD<—D>. (93)
Ag
Notice that when we choose the CEV to be the special case
0=/2 (i.e., a CNOT), the heat absorbed Q;, and positive
work W done during a cycle can be simplified to

Oin = As(PSh — P51, (94)
W=Ag(P§ - Pep) — Ap(Pgh - PS)), (95)
and
w Ap (PLL—PLY
n:—:l——D—’—;( T (96)
Oin Ag (Pgp—=Pgp

If we further assume the temperature 7 to be so low that
exp(—BpAp) <1, i.e., the demon is “erased” nearly to its
ground state pp(1)=|0,)0p| (the zero-entropy “standard
state” was also discussed in Refs. [31-33]). Then the effi-
ciency of our QHE, Eq. (96), becomes

Ap
n=1 A (97)
This is the efficiency of a simple QOE cycle without Max-
well’s demon, as shown in Eq. (27). Otherwise the operation
efficiency in Eq. (96) is less than the efficiency of a simple
QOE cycle. This is because (i) among all CEV’s, the CNOT is
the optimal operation to extract work, and (ii) when T}, is
vanishingly small, the demon can be restored to a zero-
entropy “standard state” to acquire information about the

system in the most efficient way.
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VIII. CONCLUSIONS AND REMARKS

By defining the quantum version of basic thermodynamic
processes, we study the basic properties of a QCE. To con-
struct a QCE cycle, two preconditions about the quantum
adiabatic process are required: first, all energy gaps of the
working substance must change by the same ratio, such as in
harmonic oscillators and infinite square well potentials. Sec-
ond, the change of the ratio of the energy gaps must equal
the ratio of the temperatures of the two heat baths. We find
that the working efficiency for the QCE is the same as that of
the classical Carnot engine though the internal energy may
change in the quantum isothermal process. We also study the
properties of the QOE and compare these with the classical
Otto engine, and we find that the efficiency and positive-
work condition are the same when expressed in terms of
temperatures (see Table III). Through comparing the thermo-
dynamic cycles of the two QHESs, we clarify the relationship
between them, and we demonstrate that the QCE (QOE)
cycle can be modeled as an infinite number of small QOE
(QCE) cycles. We also discuss some experimentally realiz-
able physical systems that can be used to implement our
QHE. Finally, through a generalized QOE, we demonstrate
that there is no violation of the second law, even when there
is a Maxwell’s demon. This is a prediction of Landauer’s
principle [34-38].

Before concluding this paper, we want to emphasize three
points. First, in our present study the working substance is
always assumed to be in a thermal equilibrium state, and
quantum coherence is not considered here, our study is not
related with the result that the efficiency of a QHE is less
than its classical counterpart 7o= 7c, as in Ref. [28]. Sec-
ond, we only consider the quasistatic process. Hence, the
time intervals of these processes are infinitely long and the
output power is vanishingly small. Recently, finite-time QHE
cycles [15,39] (nonzero output power) and frictionlike be-
havior [16] of the QOE were studied, where the increase of
power occurs at the expense of decreasing operation effi-
ciency. Third, we will further extend our current study to
QHE with quantum-many-body system as the working sub-
stance. In this extended case, we will consider the quantum
statistical effects, e.g., the Bose-Einsten condensation, of the
working substance. We believe these quantum effects will
advance our understanding of the relation between quantum
mechanics and thermodynamics and bring important insights
into some fundamental problems in quantum thermodynam-
ics.
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APPENDIX A: INVARIANCE UNDER ENERGY SHIFT

The amount of positive work Wy done during a QOE
cycle remains invariant under the uniform shift of all energy
levels. If we shift all the energy levels Efl in Fig. 1,

E,=E, -3, (A1)

the amount of work done during a QOE cycle becomes

Wo= 2 (Pi—P))(Ep-Ey),

n

where Igﬁl are the occupation probabilities after the energy
levels are shifted. It is easy to find that the occupation prob-

abilities Pi remain invariant under such an energy shift

Pl = e—<Ef,—a>B1< D e—<Efr5)ﬁl>_l = e-Eiﬂz(E e—Efﬁz)“ =Pl

n n

(A2)

Thus, after the energy levels shift, the net work WO done
during a QOE cycle can be simplified to

Wo=2, (P, = P,)(E,~ E,+8) =2 (P~ P,)(E, - E,),

(A3)

which is just the net work W done by the working system
during a QOE cycle before the level shift. Similarly we can

prove that W, remains invariant under the shift E'=E"— 6.

Following the same way we can prove that other proper-
ties of the QHE, such as operation efficiency and positive
work conditions, are invariant under uniform shift of all en-
ergy levels as well. Hence, we can simply assume the
eigenenergy of the ground state to be zero Ethf):O. This
energy shift is convenient for our discussion about QHE
later. This result can be easily generalized to any QCE cycle,
because in Sec. V, we demonstrate that a QCE can be mod-
elled as an infinite number of small QOE cycles.

APPENDIX B: INTERNAL ENERGY OF THE
WORKING SUBSTANCE IN QUANTUM
ISOTHERMAL PROCESSES

The internal energy of a system is

U(i) =Trp()H(D)]. (B1)

In an isothermal expansion process, all energy levels change
in the same ratio

E,—({E, n=0,12,...,

where { is the ratio of energy levels and 0<{<<1. When the
energy levels change, the internal energy of the system can
be rewritten as

v=3 = (E,), (B2)

Z(§)

where
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Z(0) = 2 exp(- BulE,) (B3)

is the partition function. To test whether the internal energy
of the system is invariant under the change of energy levels,
we take the derivative

du({) E,
d¢ '22@)

+ zﬂh(E

— {ByE,)exp(- ByLE,)

20 ) B4)

For two-level systems, there is only one term in the sum
over n, because we assume the eigenenergy of the ground
state to be zero. Thus Eq. (B4) can be simplified as

du(y) zﬁhEe)
d¢ Z(o 20 )

where E, is the eigenenergy of the excited state of the two-
level system. The RHS of Eq. (B5) is obviously nonzero.

For a harmonic oscillator with the eigenfrequency w, we
assume the eigenenergy of the ground state to be zero (ne-
glecting the ground-state energy fiw/2), then Eq. (B4) can be
simplified to

vy ( ho(Bylhw—1) ) _g g( fw )2
A~ \exp(Bthw)-1) "' \exp(Bthw) -1/

(B6)

exp(— B, {E )( (BS)

The RHS of Eq. (B6) is obviously nonzero.

For a particle confined in an infinite square potential, E,,
=yn?, where vy has been defined in Eq. (58). Then Eq. (B4)
can be simplified to

du(Q) < m’=Bilyn’
d¢ 2 2(0)

+ B¢ (2

exp(= Buiyn’)

2
20 exp(- Bhéynz)) (B7)

where
Z(§) = 2, exp(= By (BS)

is the partition function. We make an approximation

2~ fo exp(— Byl yn)dn = \/ BZ (BY)

and then Eq. (B7) can be simplified to

du(g)
dc

The RHS of Eq. (B10) is zero. Hence, we conclude that in an
isothermal process, the derivation of the internal energy over
the energy levels in Eq. (B4) is not always zero. Accordingly,
the internal energy of the system may vary with the change
of the energy levels.

(B10)
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APPENDIX C: THERMODYNAMIC REVERSIBILITY
OF AN INFINITE NUMBER OF INFINITESIMAL
QUANTUM ISOTHERMAL PROCESSES

We consider a two-level system interacting with a heat
bath. The temperature of the heat bath is well controlled so
that the two-level system is always in thermal equilibrium
with the heat bath. Now let us calculate the entropy (von
Neumann entropy) increase in the two-level system and the
entropy (thermodynamic entropy) decrease in the heat bath.
We assume the two-level system initially in thermal equilib-
rium with a heat bath at the temperature T,ll [see Eq. (40) and
Fig.6], and finally the temperature of the heat bath is con-
trolled to increase to T, (see Fig. 6). The entropy of the
initial state of the system at A’ (see Fig. 6) is

Stis(A") == kg{A exp(= A,8,)
XIn[Alexp(-A,B,)]+AlIn A’}

A ! ! !
=/ AL -kg AL exp(8i8)],  (CD)
h

where B)=1/(kgT}) and

1
A-:—: PN
T 1+exp(xA,B6))
1
L= T——————————. C2
T 1+exp(2A,B,) (€2)

Similarly, we obtain that the entropy of the final state of the
two-level system at B’ (see Fig. 6) is

A
Stus(B')= Ay~ kg I[A, exp(8,8)].  (C3)
h

So the entropy increase of the two-level system in the infinite
number of infinitesimal quantum isothermal processes (A’
— B’ in Fig. 6) is

PHYSICAL REVIEW E 76, 031105 (2007)

dSTLS = STLS(BI) - STLS(A,)

A
= ;"A+ — ky In[A, exp(A,8,)]
h

A
- (;’fAi ~ky n[A] exp(Ahﬂ;,n) S
h

Next we calculate the entropy decrease of the heat bath in the
same process. The thermodynamic entropy decrease of the
heat bath due to its coupling to the two-level system can be
expressed as

e[ ﬁ)z (ﬁﬂd_T
—kBL1 [(A»( o) -eo ) T

We apply the transformation

" kglnt’
A 1 \dt
de—h(— —2)—. (Co)
kg\ In“t) t
Under this transformation dSg,, (C5) can be further given as
ln t exp(Ah,Bh) t CXP(AhBh)
dSgan=kg T, - In| —
Lt/ T expa,)) Lt/ Texpa,))
A,
= 7A+ — kg In[A, exp(A,8)]
h
Ah ’ ’ ’
- FA+ —kgIn Al exp(A,B)) |. (C7)
h

From Egs. (C4) and (C7) we can see that dSg,,=dSts, 1.€.,
the entropy decrease in the bath is equal to the entropy in-
crease in the two-level system. Thus we have proved that the
total entropy is conserved in these infinite number of infini-
tesimal quantum isothermal processes, and these processes
are thermodynamically reversible.
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